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Abstract of the Dissertation

Square principles are statements about an important class of infinitary combinatorial

objects. They may hold or fail to hold at singular cardinals depending on our large cardinal

assumptions, but their precise consistency strengths are not yet known.

In this paper I present two theorems which greatly lower the known upper bounds of the

consistency strengths of the failure of several square principles at singular cardinals. I do

this using forcing constructions. First, using a quasicompact∗ cardinal I construct a model

of ¬�(ℵω+1, < ω). Second, using a cardinal which is both subcompact and measurable, I

construct a model of �κ,2 + ¬�κ in which κ is singular. This paves the way for several

natural extensions of these results.
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Introduction

0.1 History

Modern set theory is the study of axioms of mathematics cast in the language of sets. In 1900,

David Hilbert published twenty-three outstanding problems in mathematics. Of particular

importance to us, his first problem asked if George Cantor’s continuum hypothesis (CH)

that 2ℵ0 = ℵ1 was true, and his second problem asked if the axioms of arithmetic could be

shown to be consistent.

In 1931, Kurt Gödel proved his groundbreaking incompleteness theorems which provided

an answer to Hilbert’s second problem and brought to light the possibility that CH was

independent from ZFC. The theorems showed that sufficiently strong systems of axioms for

arithmetic can not prove their own consistency, nor can they be both complete and consistent.

In 1940, Gödel [6] described his constructible universe L, and showed that L was a model of

ZFC + CH. That is, he showed it is consistent with ZFC that the continuum hypothesis is

true.

In 1964, Paul Cohen [1, 2] completed Hilbert’s first problem by proving that it was

consistent ZFC that CH could fail. To do so, Cohen invented a method of building outer
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models called forcing. This paved the way for many further independence results.

A critical object used in studying axioms is the large cardinal. Large cardinals are

infinite cardinal numbers with additional properties that are so strong that their existence

and nonexistence cannot be proved from ZFC. They are inaccessible, and so the mathematical

universe below any such cardinal will be a model of ZFC. A prime example is Ulam’s [9]

measurable cardinal, a type of cardinal number which arose from measure theory. Like other

large cardinals, measurable cardinals have both a combinatorial definition and a model-

theoretic definition. This second approach, introduced by Dana Scott [9], involves maps

known as elementary embeddings which connect models in a way that preserves formulas.

Thus if a large cardinal exists, we may sometimes use a derived elementary embedding to

prove consistency results.

Large cardinals form a natural hierarchy of consistency strength with which we can

compare various set-theoretic principles. For example, the large cardinal notion of weak

compactness for a cardinal κ is equiconsistent with κ being an inaccessible cardinal at which

all κ-trees must have cofinal branches.

0.2 Singular cardinal combinatorics

My research works with infinite combinatorics at singular cardinals. Specifically I have inves-

tigated the consistency strength of the failure of several of the so-called “square principles”

at singular cardinals and successors to singular cardinals. The first such principle was iso-

lated by Ronald Jensen [8] in his construction of Suslin trees in L. In fact, he showed that

L |= (∀κ)�κ, that is, every model of ZFC will have an inner model in which �κ holds.

However, the existence (and equivalently, nonexistence) of square sequences is known to be

independent of ZFC. For example, if a model of ZFC contains a supercompact cardinal κ

then �λ will fail to hold in that model.

Although many results exist showing that the existence of supercompact cardinals will

cause the failure of various square principles, supercompactness is far higher in consistency

strength than one needs. In particular, to get �κ to fail one only needs to influence the

universe up through κ+, whereas a supercompact cardinal influences all of the universe.
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Jensen isolated a property implying the failure of �κ called subcompactness, which is much

weaker than 2κ-supercompactness. There is evidence suggesting that this is a very promising

large cardinal axiom. For example, it was proved by Schimmerling and Zeman [11] that in

all core models �κ fails if and only if κ is subcompact.

However, in all of these examples if we begin with a large cardinal we are by definition

working with a regular cardinal. Proving analogous results at singular cardinals is difficult.

The general strategy will be to first look for a large cardinal notion at which the desired

result holds. For example, we may begin with a supercompact cardinal κ since we know

that in a model of such a cardinal �κ already fails. We then will attempt to build a model

in which κ has been made singular, doing so in such a way that �κ still fails in the target

model.

0.3 Research

0.3.1 Square at a successor to a singular cardinal

In my first theorem I showed that the consistency strength of the failure of �(ℵω+1, < ω) can

be lowered to that of a slight strengthening of quasicompactness. Kypriotakis [10] proved

that it is consistent that �(κ+) holds at a subcompact cardinal κ (modulo the existence

of an extender model), so subcompactness is unlikely to be enough to prove such a result.

However, if κ is a quasicompact cardinal then �(κ+) fails, so this is where we begin our

proof, with a slight strengthening of quasicompactness which has appeared to be necessary

for our forcing construction.

Theorem 0.3.1 (Holben) (GCH) It is consistent relative to the existence of a

quasicompact∗ cardinal that �(ℵω+1, < ω) fails.

Proofs of this kind often follow a standard pattern. One often will use an elementary

embedding to push a coherent κ+-sequence of squares up, creating a longer sequence. We can

then pull back a club set from the new sequence and show that it coheres with our original

sequence, thus proving that the square principle cannot hold in the original model containing
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the large cardinal. This sort of approach works for many types of square principles and a

number of large cardinal axioms.

As mentioned above, since large cardinals are regular we must work harder to do the same

kind of proof while turning κ into a singular cardinal. To do so one may have to do a forcing

construction, such as Prikry forcing. Prikry forcing [5] is the standard tool for turning a

measurable cardinal into a singular. This complicates our proof, however, as we must work

with names for sets rather than the sets themselves. Additionally, we must construct all of

our arguments in a way such that our desired large cardinal properties, such as ¬�(κ+, < ω),

will still hold after forcing. In this proof we use a modification of Prikry forcing in which we

interleave collapse forcings. This will turn κ into ℵω without collapsing κ+.

Finally, it should be observed that our result is the best possible using our methods, in

that we would not expect to get ¬�(ℵω+1, ω) using a Prikry forcing. This follows from the

theorem of Cummings and Schimmerling [4] which says that any outer model of V which

sees a V -inaccessible cardinal κ as ω-cofinal but agrees on the cardinal successor of κ must

contain a �κ,ω sequence.

0.3.2 Separation of square principles

The next theorem works towards greatly lowering the consistency strength of separating

out the principles �κ,n at a singular cardinal. It follows from their definitions that �κ,n

implies �κ,n+1, but it can be shown that there exist models in which these principles are not

equivalent. The following theorem which says the opposite implication can fail was proved

in 2001 [3]:

Theorem 0.3.2 (Cummings-Foreman-Magidor) Let κ be a supercompact cardinal and

suppose that 2κ
+ω

= κ+ω+1. Let 1 ≤ µ < ν < ℵω be two cardinals. Then there is a generic

extension satisfying �ℵω ,ν + ¬�ℵω ,µ.

I proved the result for �κ,2 + ¬�κ at a singular cardinal. However, our large cardinal

assumptions are again much weaker than a supercompact. Additionally, our proof may

generalize in several ways which we discussed later. Our proof uses an Easton support
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iteration to prepare a model in which we can do a Prikry forcing. The proof also adopts a

method of Jensen [7] which was originally used to show separation at a regular cardinal.

Theorem 0.3.3 (Holben) (GCH) It is consistent relative to the existence of a subcompact

cardinal which is also measurable that �κ,2 holds while �κ fails at a singular cardinal κ.
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Chapter 1

Background Material

1.1 Large cardinals

Large cardinals are infinite cardinals numbers whose existence is independent of ZFC. Here

we define the large cardinal notions relevant to our arguments. First we give a definition for

measurability using elementarity.

Definition 1.1.1 A cardinal κ is measurable if and only if it is the critical point of an

elementary embedding j : V →M .

The definition of measurability is equivalent to a combinatorial construction which we

reference here and define in the next section.

Lemma 1.1.1 A cardinal κ is measurable if and only if there exists a non-principle κ-

complete ultrafilter U on κ. If j : V →M has critical point κ, then U = {x ⊆ κ | κ ∈ j(x)}

is such an ultrafilter, and if U is such an ultrafilter, then j : V → Ult(V, U) is an elementary

embedding with critical point κ, where Ult(V, U) is the ultrapower of V by U , which we define

in the next section.

Many results can be proved using supercompact cardinals, so we define them here.

Definition 1.1.2 A cardinal κ is supercompact if and only if for every cardinal λ ≥ κ there

exists an elementary embedding j : V → M with critical point κ such that j(κ) > λ and

λM ⊆M .
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Figure 1.1: Subcompact and quasicompact cardinals.

The results that we will prove rely on subcompact and subcompact cardinals, whose

definitions are symmetric .

Definition 1.1.3 A cardinal κ is subcompact if and only if for every set B ⊆ Hκ+ there

exists α < κ, A ⊆ Hα+ and an elementary embedding

j : 〈Hα+ ,∈, A〉 → 〈Hκ+ ,∈, B〉

such that crit(j) = α.

Definition 1.1.4 A cardinal κ is quasicompact if and only if for every set B ⊆ Hκ+ there

exists λ > κ, C ⊆ Hλ+ and an elementary embedding

j : 〈Hκ+ ,∈, B〉 → 〈Hλ+ ,∈, C〉

such that crit(j) = κ.

Both of the results in this paper assume GCH, so the following lemma is relevant:

Lemma 1.1.2 If GCH holds, then the above formulations of subcompactness and quasicom-

pactness are equivalent to formulations where we take subsets of the form A ⊆ γ+ instead of

A ⊆ Hγ+ for cardinals γ.
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1.2 Some models of set theory

We will use several standard types of models in proving consistency results.

Definition 1.2.1 For any regular cardinal θ let

Hθ = {x | |trcl(x)| < θ}

be the set of all sets with transitive closure of size less than θ.

Lemma 1.2.1 For any regular uncountable cardinal θ, Hθ |= ZFC−.

Whenever we have a measure U we may construct a useful model of set theory called the

ultrapower.

Definition 1.2.2 (Ultrapower) Let κ be measurable as witnessed by the ultrafilter U on κ.

We define an equivalence relation on κV by f =U g if and only if {ξ ∈ κ | f(ξ) = g(ξ)} ∈ U .

In order to make sure our equivalence classes are sets, we require declare that for any f ∈ κV ,

[f ]U = {g ∈ κV | g =U f ∧ g is of minimum rank}. We then let Ult(V, U) = {[f ]U | f ∈κ V }

be the ultrapower of the universe by U .

Theorem 1.2.1 (6 Loś) Let ϕ(v1, ...vn) be a formula of set theory and let f1, ...fn ∈κ V .

Then

Ult(V, U) |= ϕ([f1]U , ..., [fn]U)

if and only if

{ξ ∈ κ | ϕ(f1(ξ), ..., fn(ξ))} ∈ U.

1.3 Square Principles

Square sequences are sequences of club sets which cohere with each other, taken with some

additional properties. They were originally isolated by Jensen in his construction of Suslin

trees in the model L. There are many variants on square, and we list those relevant to this

paper below.
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Definition 1.3.1 Let α be a limit ordinal and let C ⊆ α be a set.

• We say that C is club in α if and only if it contains all of its limit points below α and

it is unbounded in α.

• For κ < α we say that C is < κ-club in α if and only if C contains all of its limit

points below α of cofinality < κ, and is unbounded in α.

Definition 1.3.2 A set S is stationary in α if and only if it has nonempty intersection with

every set club in α.

We are now ready to define the most basic kind of square sequence.

Definition 1.3.3 Let κ be a cardinal, and let C = 〈Cα | α ∈ lim(κ, κ+)〉 be a sequence such

that for each α ∈ lim(κ, κ+)

• Cα is club in α,

• otp(Cα) ≤ κ, and

• (Coherency) β ∈ lim(Cα)→ Cβ = β ∩ Cα.

C is called a �κ sequence, and if such a sequence exists we say that �κ holds.

We now define what it means to be a thread for a coherent sequence of club sets. The

definition can be naturally generalized for other types of square sequences. The existence of

threads will be the primary method by which we will observe the failure of square principles.

Definition 1.3.4 Let C be a sequence of coherent clubs that is cofinal in κ. Then we say

that D is a thread for C if and only if D is a club set in κ which coheres with the sequence.

Definition 1.3.5 Let κ be a regular cardinal, and let C = 〈Cα | α ∈ lim(κ)〉 be a sequence

such that,

• For every α ∈ lim(κ),

– Cα is club in α,
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– (Coherency) β ∈ lim(Cα)→ Cβ = β ∩ Cα, and

• There is no thread for the sequence.

C is called a �(κ) sequence, and if such a sequence exists we say that �(κ) holds.

Observe that �κ implies �(κ+). They both assert the existence of κ+ sequences, so the

fact that κ and κ+ do not match up is purely notational. Finally, we will also be working with

a weakened version of square formulated by Schimmerling, in which our sequence elements

are sets of clubs, rather than clubs themselves. We define this generalization of �κ below,

but the �(κ) version is generalized identically.

Definition 1.3.6 Let λ ≤ κ be cardinals. We say that 〈Cα | α ∈ lim(κ, κ+)〉 is a �κ,λ

sequence if and only if for each α ∈ lim(κ, κ+)

• 1 ≤ |Cα| ≤ λ,

• For all C ∈ Cα,

– C is club in α,

– ot(C) ≤ κ, and

– (Coherency) β ∈ lim(C)→ C ∩ β ∈ Cβ.

If such a sequence exists we say that �κ,λ holds.

10



Chapter 2

Forcing

Forcing is a method used to construct outer models of set theory which can be used to find

upper bounds to the consistency strength of various principles of interest. We will use forcing

methods in conjunction with elementary embeddings to produce models in which our results

are achieved. Here we list some basic facts as well as the forcing constructions we will use.

2.1 Basics

We begin with some of the combinatorial properties of partially ordered sets, and then we

give their immediate consequences in forcing.

Definition 2.1.1 (Combinatorial properties of posets) Let (P,<) be a forcing poset.

Then

1. (P,<) has the κ chain condition, or the κ-c.c., if and only if there are no antichains

in P of size κ. As a special case, we traditionally say (P,<) has the countable chain

condition (c.c.c.) if and only if it has the ω1-c.c.

2. (P,<) is κ-closed if and only if for every descending chain p0 ≥ p1 ≥ ... ≥ pξ ≥ ...

of length γ, where γ < κ, there exists a condition p such that for all ξ < γ we have

p ≤ pξ.

3. (P,<) is κ-directed closed if and only if for every directed set D ⊆ P with size ≤ κ

there exists some p ∈ P such that p ≤ d for all d ∈ D.
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4. (P,<) is strategically κ-closed if and only if for every two player game G(P ) of length

≤ κ where player I plays on the even and limit steps, player II has a winning strategy.

5. (P,<) is κ-distributive if and only if the intersection of < κ-many open dense sets is

open and dense.

Theorem 2.1.1 Let (P,<) be a notion of forcing and let κ be a cardinal. Then

1. If P has the κ-c.c. then P preserves cofinalities ≥ κ. If κ is regular then P preserves

cardinals ≥ κ.

2. If P is κ-distributive then P preserves cofinalities and cardinals ≤ κ.

3. If P is κ-directed closed then it is κ+-closed.

4. If P is κ+-closed then it is strategically κ-closed.

5. If P is κ-closed then it is κ-distributive.

We now define a basic kind of forcing which is used in our first result.

Definition 2.1.2 (Lévy Collapse) Let κ ≤ λ be cardinals such that κ is regular and λ is

inaccessible. Let p ∈ Col(κ,< λ) if and only if

• p : λ× κ→ λ is a partial function such that |p| < κ,

• For every (α, β) ∈ dom(p), p(α, β) < α.

For p, q ∈ Col(κ,< λ) we let p ≤ if and only if p ⊇ q.

Theorem 2.1.2 Let G be a filter for Col(κ,< λ) that is generic over V . Then

V [G] |= λ = κ+.
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2.2 Prikry forcing

Here we define a forcing that turns a measurable cardinal into a singular cardinal, invented

by Karel Prikry in his doctoral thesis. Forcing with this poset will add an ω-sequence that

is cofinal in our cardinal, but will not collapse any cardinals.

Definition 2.2.1 Let κ be a measurable cardinal with measure U . Let P be the set of all

pairs (p,A) where

1. p is a finite increasing sequence of ordinals in κ,

2. A ∈ U , and

3. min(A) > max(p).

Let (p,A), (q, B) ∈ P . We say that (p,A) ≤ (q, B) if and only if

1. p end extends q,

2. A ⊆ B, and

3. p\q ⊆ B.

We define a subordering of ≤ by saying that (p,A) is a direct extension of (q, B), and writing

(p,A) ≤∗ (q, B), if and only if

1. p = q, and

2. A ⊆ B.

The following is a very useful property of Prikry forcing, which says that arbitrary forcing

conditions do not have to be extended far in order to decide a statement.

Lemma 2.2.1 (The Prikry condition) Let ϕ be a statement in the forcing language of

(P,<) and let (p,A) ∈ P . Then there is a direct extension (q, B) ≤∗ (p,A) such that

(q, B)||ϕ,

where this is read as “(q, B) decides ϕ”, meaning that the condition forces either ϕ or ¬ϕ.

13



Finally, we show the result of doing a Prikry forcing.

Theorem 2.2.1 Let G be a filter for (P,<) generic over V . Then in the generic extension

V [G], the following holds:

1. All cardinals are preserved, and

2. cf(κ) = ω.

2.3 Modified Prikry forcing

There are many variants on Prikry forcing, depending on if one wants to change the cardinal’s

cofinality to something larger than ω, if one has different large cardinal assumptions, etcetera.

Here we present a modification of ordinary Prikry forcing which can be used to turn a

measurable cardinal into ℵω. This is done by interleaving the ordinals in the Prikry sequence

with conditions from collapse forcings. By doing so we collapse all of the cardinals inbetween,

making κ into the ωth infinite cardinal.

We first define the forcing in a more general setting by not specifying the kinds of forcings

we will interleave. The forcing and its properties are fairly involved, so here we only present

the definition and some key properties which are used in this paper. First, we begin by

assuming we have the following:

• Let κ be a measurable cardinal with measure U and derived ultrapower embedding

i : V →M ∼= Ult(V, U).

• Let X ∈ U be a subset of inaccessibles below κ, and let Q : X → Vκ+1 be a function

such that for every α ∈ X

– Q(α) ⊂ Vκ is a α+-closed forcing,

– If α < β then Q(α) ∩ Vβ is a complete subposet of Q(α).

• There is a filter F ∈ V that is i(Q)(κ) = [Q]U -generic over M .

Given the above, we may now define our forcing.

14



Definition 2.3.1 Let p ∈ P if and only if

p = 〈δ0, p0, ..., δn, pn, g〉

and the following properties hold:

• n ∈ ω,

• For i ≤ n, δi ∈ X,

• For i < n, pi ∈ Q(δi) ∩ Vδi+1, and pn ∈ Q(δn),

• g is a function with domain in U contained in X, such that

– For all α ∈ dom(g) h(α) ∈ Q(α), and

– i(g)(κ) = [g]U ∈ F .

Suppose that p, q ∈ P are defined by

p = 〈δ0, p0, ..., δn, pn, g〉

q = 〈ε0, q0, ..., εn, qn, ..., εm, qm, h〉

Then we define the ordering q ≤ p by

• n ≤ q,

• For i ≤ n, δi = εi and qi ≤Q(δi) pi,

• For i > n, εi ∈ dom(g) and qi ≤Q(εi) g(εi),

• dom(h) ∩ (εm, κ) ⊆ dom(g), and

• For every α ∈ dom(h) ∩ (εm, κ), h(α) ≤Q(α) g(α).

Finally as we did with ordinary Prikry forcing, we define direct extension. For conditions p

and q written as above, let p ≤∗ q if and only if p ≤ q and

• n = m, and

15



• For every i, δi = εi.

Now we will discuss some essential properties of this modified Prikry forcing.

Lemma 2.3.1 (The Prikry condition) Let p ∈ P and let ϕ be a statement in the forcing

language of P . Then there is some q ≤∗ p that decides ϕ.

We can now give the main result for this forcing. If we specify the function Q we will be

able to conclude more. This will be done when the forcing is used later in this paper.

Theorem 2.3.1 Let G be generic for P over V . Then

• For each i ∈ ω there is a unique cardinal δi contained in the (2i)th position of any

p ∈ G with large enough domain. Thus ~δ = 〈δi | i ∈ ω〉 is the well-defined Prikry

sequence cofinal in κ added by G, and so V [G] |= cf(κ) = ω.

• For each i ∈ ω let

Gi = {p(2i+ 1) | p ∈ G and 2i+ 1 ∈ dom(p)}

Then Gi is generic for Q(δi) ∩ Vδi+1
and is contained in V [G].

2.4 Iteration

It is often useful to force multiple times in succession. If the second forcing depends on how

the first generic is picked, and so on, one must use names in order to define the iteration

in the ground model. Here we briefly define the basics of iterating forcing posets in this

manner.

Definition 2.4.1 (Iterated forcing) For any ordinal α ≥ 1 we let (Pα, <α) denote an

iteration of length α. Then we let p ∈ Pα if and only if p is an α sequence with the following

properties:

1. If α = 1 then for some forcing notion Q0,

(a) P1 is the set of all 1-sequences 〈p(0)〉, where p(0) ∈ Q0, and
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(b) 〈p(0)〉 ≤1 〈q(0)〉 if and only if p(0) ≤ q(0).

2. If α = β + 1, then Pβ = Pα � β = {p � β | p ∈ Pα} is an iteration of length β, and

there is a name Q̇β ∈ V Pβ for a forcing notion such that

(a) p ∈ Pα if and only if p � β ∈ Pβ and β p(β) ∈ Q̇β, and

(b) p ≤α q if and only if p � β ≤β q � β and p � β β p(β) ≤ q(β).

3. If α is a limit ordinal, then for every β < α, Pβ = Pα � β is an iteration of length β,

and

(a) The α-sequence 〈1, 1, ..., 1, ...〉 is in Pα,

(b) If p ∈ Pα, β < α, and q ∈ Pβ is such that q ≤β p � β, then the condition

qa(p � [β, α)) is in Pα, and

(c) p ≤α q if and only if p � β ≤β q � β for all β < α.

This definition is unambiguous about what conditions must occur at successor steps, but

it leaves us some freedom to choose how we take limit steps. We define the two most common

types of limit step definitions below. They are the most extreme possibilities; all iterations

at limit ordinals must contain the direct limit and be contained in the inverse limit.

Definition 2.4.2 Let Pα be an iteration and let p ∈ Pα. We say the support of p is the set

suppt(p) = {β < α | p 6= 1β}.

Definition 2.4.3 Let α be a limit ordinal, and let Pα be an iteration. Then

• Pα is a direct limit if and only if ∀p ∈ Pα p has bounded support.

• Pα is an inverse limit if and only if ∀p ∈ Pα ∀β < α p � β ∈ Pβ.

Definition 2.4.4 (Easton support) We say that an iteration Pα has Easton support if

and only if for every p ∈ Pα and for every regular cardinal γ ≤ α, |suppt(p) ∩ γ| < γ.

Equivalently, for every limit ordinal γ ≤ α, Pγ is a direct limit if γ is regular, and Pγ is an

inverse limit otherwise.
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Lemma 2.4.1 (The factor lemma) Let Pα+β be an iteration of 〈Q̇ξ | ξ < α + β〉, where

for every limit ordinal ξ ≤ α + β, Pξ is either a direct or inverse limit. Let Ṗ
(α)
β be a name

in V Pα for the forcing iteration of 〈Q̇α+ξ | ξ < β〉, such that for every limit ordinal ξ < β,

Ṗ
(α)
ξ is a name for a direct or inverse limit, depending on if Pα+ξ is a direct or inverse limit.

Then, if Pα+ξ is an inverse limit for every limit ordinal ξ ≤ β for which cf(ξ) ≤ |Pα|,

then Pα+β
∼= Pα ∗ Ṗ (α)

β .

2.5 Forcing squares

In this section we define two forcings which will be used in our second result. One will add

a �α,2 sequence, and one will add a thread for an existing �α,2 sequence.

Definition 2.5.1 Let α be a regular cardinal. Define P 1
α to be the set of all sequences p such

that

• dom(p) = lim(δ + 1) for some δ ∈ lim(α, α+),

• For all δ ∈ dom(p) 1 ≤ |p(ξ)| ≤ 2, and for all c ∈ p(ξ),

– c is club in ξ,

– ot(c) ≤ α, and

– (Coherency) β ∈ lim(c)→ c ∩ β ∈ p(β).

Ordering is by end extension.

Lemma 2.5.1 The forcing P 1
α is α-distributive, and in particular does not collapse α+.

For the moment let us suppose we are in a model M , and let F 1
α be generic for P 1

α over

M . Evidently, ~C =
⋃
F 1
α is a �α,2 sequence in M [G1

α]. We may now force again to thread

the sequence ~C.

Definition 2.5.2 Let ~C = 〈Cξ | ξ ∈ lim(α, α+)〉 be a �α,2 sequence. Define P 2
α to be the set

of all sets p such that

• p is a closed and bounded subset of α+ with ot(p) < α, and
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• (Cohereny) β ∈ lim(p)→ p ∩ β ∈ ~Cβ.

Ordering is by end extension.

Suppose that F 2
α is a generic for P 2

α over V , where P 2
α is built from the �α,2-sequence ~C.

Then V [F 2
α] |=

⋃
F 2
α is a thread for ~C.
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Chapter 3

Forcing ¬�(ℵω+1, < ω)

In this chapter we will be proving the following theorem which lowers the known consistency

strength of the failure of �(κ,< ω) at the successor of the first singular cardinal.

Theorem 3.0.1 (GCH) It is consistent relative to the existence of a quasicompact∗ cardinal

that �(ℵω+1, < ω) fails.

3.1 Large cardinal assumptions

Our theorem depends on the existence of a modification of quasicompactness which we call

quasicompact∗, or QC∗. It is consistent relative to the existence of a κ+-supercompact

cardinal that a quasicompact∗ cardinal exists, and it is defined as follows:

Definition 3.1.1 A cardinal κ is quasicompact∗ if and only if there exists a cardinal λ > κ

and a map j : Hκ+ → Hλ+ with critical point κ such that for every B ⊆ κ+ there is a set

C ⊆ λ+ for which

j : 〈Hκ+ ,∈, B〉 → 〈Hλ+ ,∈, C〉,

is elementary.
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3.2 Defining the forcing

Let P denote a modified Prikry forcing built using a map j and derived ultrafilter U on κ,

defined as follows. First, for any condition with no cardinals, the stem will be of the form

p−1 ∈ Col(ω,< κ). All other conditions will begin with a condition p−1 ∈ Col(ω,< δ0), where

δ0 is the first cardinal in the stem. For the remainder of the stem, we interleave collapses

via the function Q(α) = Col(α++, < κ). Finally, let X = {ξ < κ | ξ is inaccessible}, and let

F ∈ V be a generic for j(Q)(κ) = Col(κ++, < j(κ)) over M = Ult(V, U).

Now towards a contradiction, suppose there is a condition p ∈ P and a name Ċ ∈ V P

such that

p P Ċ = 〈Cξ | ξ ∈ lim(κ, κ+)〉 is a �(κ+, < ω) sequence.

Let G be a filter generic for P over V containing p. Let P
′
= j(P ) and let Ċ

′
= j(Ċ).

Lastly, let β = sup j[κ+]. Since j : Hκ+ → Hµ+ , µ+ is regular, and otp(β) = κ+ < µ+,

it follows that β < µ+. We will be using Ċ
′

β to build a thread for ĊG. Observe that by

elementarity we have that

j(p) P ′ Ċ
′

is a �(µ+, < ω) sequence.

Therefore j(p) P ′ ∃Ḋ ∈ Ċ
′

β. By maximality principle let us fix a name Ḋ ∈ V P
′

for a club

set in β such that j(p) P ′ Ḋ ∈ Ċ
′

β.

3.3 Main lemma

A common application of the Prikry condition is showing that Prikry forcing does not add

entirely new club subsets of small order type. That is, any club set added by the forcing

must contain a club set from the ground model. Here we show that our modification of

Prikry forcing retains this property, and in addition we do not add too many club sets of

this kind.

First we shall define some notation. Let S ↓ p = {s | s is a stem s.t. ∃g: 〈s, g〉 ∈ P ↓ p}

be the set of all stems for conditions below p in P . For any s ∈ S ↓ p, let As = {g | 〈s, g〉 ∈ P}

be the collection of all possible top parts for s in P . Observe that for any such s we have
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that |As| ≤ 2κ. We will now show that, given a stem s ∈ S ↓ p, we can find a ground model

club that is forced to be a subset of Ḋ, and that this club will be the same regardless of the

choice of g.

Lemma 3.3.1 (Main lemma) Let s ∈ S ↓ p. Then there exists qs ∈ P
′

and a set Ds ∈ V

which is club in β such that qs ≤P ′ j(s, g) for every g ∈ As, and qs P ′ Ďs ⊆ Ḋ. In

particular, the definitions of qs and Ds are independent of the choice of g.

Proof: First we show that the choice of g ∈ As does not matter. Let s = 〈p−1, δ0, p0, ...δn−1, pn−1〉 ∈

S ↓ p. Note that |As| = 2κ = κ+, so enumerate As by 〈gα | α < κ+〉. We now

move to the j side and work in P
′
. For each α < κ+ let pαn = j(gα)(κ). So for each α,

〈s, κ, pαn, j(gα)〉 < j(〈s, gα〉) = 〈s, j(gα)〉. To see why extending our stems in P
′

by κ is possi-

ble, recall that we used j and its derived ultrafilter U to construct P . Since X ∈ U we have

that κ ∈ j(X), so κ may occur in Prikry sequences added by forcing with P
′
. Furthermore,

for each α < κ+ this gives us that dom(gα) ∈ U , so κ ∈ j(dom(gα)) = dom(j(gα)), so we may

add κ to the stem of each condition 〈s, j(gα)〉. Now since we picked each pαn = j(gα)(κ) ∈ F

and F is generic for j(Q)(κ) = Col(κ++, < j(κ)) which is κ++-closed, we may find a single

condition pn ≤ pαn in j(Q)(κ) for all α < κ+. Thus 〈s, κ, pn, j(gα)〉 ≤ 〈s, κ, pαn, j(gα)〉 for each

α. Finally, since P
′

is a Prikry forcing on j(κ) and |As| = 2κ < j(κ), there is a single upper

part ḡ such that for all α < κ+ we have q := 〈s, κ, pn, ḡ〉 ≤ 〈s, κ, pn, j(gα)〉. We will now

work below this condition q ∈ P ′ .

In V let T = 〈τξ | ξ ∈ κ+〉 enumerate a club in β. For the remainder of this proof

we will argue entirely using P
′
, so we will drop all such subscripts. Additionally, within

this proof we will use the following notation which will let us look at the lower and upper

halves of conditions. For any condition r ∈ P
′ ↓ q we will say “lower part of r” to mean

r0 := r � (2n + 1). Similarly, we will say “upper part of r” to mean r1 := r − (2n + 1).

Note that this is distinct from referring to the bottom or top parts of a condition, which

refer to the stem and the function, respectively. We will let ≤0 and ≤1 be the corresponding

orderings derived from ≤P ′ .

We now define a κ+-sequence of conditions below q inductively. First, let q0 ≤∗ q be such

that q0||τ0 ∈ Ḋ. For the successor step, suppose that we have defined qξ for some ξ < κ+.
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Then let q̄ξ = q0
0
a
q1
ξ and then let qξ+1 ≤∗ q̄ξ be such that qξ+1||τξ+1 ∈ Ḋ. For the limit

step, suppose that ξ is a limit ordinal and that we have defined qξ̄ for every ξ̄ < ξ. Use the

κ++-closure of the upper parts of our conditions in j(P )(κ) to find q̄1
ξ ≤∗1 q̄1

ξ̄
for each ξ̄ < ξ,

and then let q̄ξ = q0
0
a
q̄1
ξ . We then let qξ ≤∗ q̄ξ be a direct extension such that qξ||τξ ∈ Ḋ.

We have produced a sequence 〈qξ | ξ < κ+〉. However we do not know if all conditions

in this sequence are comparable, so we will pass to a subsequence in which they are. To do

this, first note that there are only κ-many possible lower parts to a condition in P
′
, but our

sequence is of length κ+. Therefore there is a stationary set S ⊆ κ+ and a tuple q̄0 such that

q0
ξ = q̄0 for every ξ ∈ S.

Claim 1 If ξ, ξ
′ ∈ S then ξ < ξ

′ → qξ′ ≤∗ qξ.

Proof of claim: First note that for α < α
′

it is true that q̄α′ ≤ q̄α, since the conditions’ lower

parts are equal and the upper parts descend by construction. Now let us compare qξ and qξ′ .

Observe that q1
ξ′

= q̄1
ξ′
≤1 q̄1

ξ and q0
ξ′

= q̄0 = q0
ξ , so qξ′ ≤ qξ. The lengths of the conditions

are the same, so the ordering is by direct extension.

� (Claim)

Thus 〈qξ | ξ ∈ S〉 is a ≤∗-descending κ+-sequence. Since the upper part of our forcing is

κ++-closed, there is a single upper part, call it q̄1, such that q̄0aq̄1 ≤∗ q̄0aq1
ξ for every ξ ∈ S.

Call this full condition qs = q̄0aq̄1. This condition lies below the portion of our sequence

indexed by S.

Now we will show that for almost all ξ ∈ S, qs  τξ ∈ Ḋ. Suppose not. Let S
′

= {ξ ∈

S | qξ  τξ /∈ Ḋ} and let A = {τξ | ξ ∈ S
′}. Note that both of these sets are defined in the

ground model.

Claim 2 If S
′

is stationary then so is A.

Proof of claim: Let E be any club set in β. Since T is club as well, the intersection E ∩ T is

club in β. Viewing T as the function T : κ+ → β, let E
′
= T−1[E ∩ T ] = {ξ ∈ κ+ | τξ ∈ E}.

Since E∩T is unbounded in β, E
′
is unbounded in κ+. Now let 〈αξ | ξ ∈ γ〉 be an increasing

sequence in E
′
, where γ < κ+. For each ξ ∈ γ, ταξ ∈ E. Since E is closed, sup

ξ<γ
ταξ ∈ E,

and since T is continuous, sup
ξ<γ

ταξ = τsup
ξ<γ

αξ . Thus τsup
ξ<γ

αξ ∈ E, and so sup
ξ<γ

αξ ∈ E
′
. We
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conclude that E
′

is club in κ+. Since we assumed that S
′

was stationary, there exists some

ξ ∈ S ′ ∩ E ′ . But then τξ ∈ E and ξ ∈ S ′ , thus τξ ∈ A. We therefore see that A ∩ E 6= ∅, so

A is stationary.

� (Claim)

Let us quickly see that our forcing preserves the stationarity of S
′
, and thus the station-

arity of A. To see this, factor P
′

at κ. The lower part is a forcing of size κ which therefore

has the κ-c.c., and the upper part of our forcing’s ≤∗1 ordering is κ++-closed, so neither

forcing will add a club in β that doesn’t contain a club already in the ground model. It

follows that any club in β in V [G] meets S
′
, so stationarity is preserved.

Observe then that by forcing below j(p), A is stationary in β while qs  Ǎ ∩ Ḋ = ∅, a

contradiction since Ḋ is forced to be club. Therefore our assumption that S
′

is stationary

was incorrect, and so we must conclude that S
′′

:= {ξ ∈ S | qs  τξ ∈ Ḋ} is stationary in

κ+.

We are now ready to define our ground model club set. Let

Ds = {τξ | qs  τξ ∈ Ḋ} = {τξ | ξ ∈ S
′′}.

This is a definition in V . Note that qs  Ďs ⊆ Ḋ. Unboundedness of Ds follows since S
′′

is unbounded in κ+. To see that D is closed, let 〈ξα | α < γ〉 be an increasing bounded

sequence in S
′′
. Then qs  τξα ∈ Ḋ for every α < γ, so since qs sees that Ḋ is a name

for a club set, qs  sup
α<γ

τξα ∈ Ḋ. Since we picked our sequence of τξ’s to be continuous,

sup
α<γ

τξα = τsup
α<γ

ξα , so sup
α<γ

ξα ∈ S
′′
. Therefore sup

α<γ
τξα ∈ Ds, and so Ds is closed.

� (Main lemma)

3.4 Construction

3.4.1 Building the indexing set

We are almost ready to build a thread, but first we will build a set I with which to index

it. Given any s ∈ S, let Ds ∈ V be a club in β and qs ∈ P
′

be such that qs  Ďs ⊆ Ḋ, as
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provided by our main lemma. Let

I =
⋂
s∈S

Ds.

Now observe that since |S| = κ, we are intersection κ-many sets club in β so since the club

filter on β is κ+-closed, the intersection is nonempty and club. Now we will argue that for

any limit ordinals of j−1[I], we get coherence in our sequence Ċ.

Claim 3 Let j(α), j(α
′
) ∈ lim(I) with α < α

′
. Then

Dα,α′ = {q ≤ p | q  ∃Ḟ ∈ Ċ(α
′
) : Ḟ ∩ α ∈ Ċ(α)}

is dense in P below p.

Proof of claim: Let q ≤ p, where q = (s, g). By the main lemma there is a corresponding

ground model club Ds and a P
′
-condition qs ≤∗ j(q) such that qs P ′ Ďs ⊆ Ḋ. Thus

qs  j(α), j(α
′
) ∈ lim(I) ⊆ lim(Ďs) ⊆ lim(Ḋ), and so since coherency is forced, qs 

Ḋ ∩ j(α) ∈ Ċ ′j(α) & Ḋ ∩ j(α) ∈ Ċ ′
j(α′ )

. Thus

∃q′ ≤∗ j(q) : q
′
P ′ ∃Ḟ ∈ Ċ

′

j(α′ )
s.t. Ḟ ∩ j(α) ∈ Ċ ′j(α).

Therefore by elementarity,

∃q′ ≤∗ q : q
′
P ∃Ḟ ∈ Ċα′ s.t. Ḟ ∩ α ∈ Ċα.

� (Claim)

3.4.2 Building the thread

Now we need to show that we will force that we have a club set that reaches all the way

to κ+ and coheres with our sequence. Let G be a generic for P containing p. Towards a

contradiction, suppose that

V [G] |= “(∃α ∈ j−1[lim(I)])(∀F ∈ ĊG
α )

(Aα,F := {γ ∈ (α, κ+) ∩ j−1[lim(I)] | ∃E ∈ ĊG(γ) : E ∩ α = F} is bounded in κ+)”.
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Working in V [G], let γ ∈ (sup
⋃
{Aα,F | F ∈ ĊG

α }, κ+) ∩ j−1[lim(I)]. Note that since κ+ is

regular and |ĊG
α | < ω, sup

⋃
{Aα,F | F ∈ ĊG

α } < κ+. By the density of Dα,γ, there exists

K ∈ ĊG
γ such that K ∩ α ∈ ĊG

α . But then γ ∈ Aα,K∩α, a contradiction.

Now pick any ᾱ ∈ j−1[lim(I)], and pick F̄ ∈ ĊG
ᾱ such that Aᾱ,F̄ is unbounded in κ+.

We would like to close upwards. However we must take some care, as not all clubs can be

closed upwards to κ+, and also it is possible that there may exist some α > ᾱ such that ĊG
α

contains multiple clubs that are equal when intersected with ᾱ.

We shall work inductively starting from ᾱ to build a partial choice function T : κ+ →

V [G]. Let T (ᾱ) = F̄ . Now given any ξ ≥ ᾱ at which T has already been defined, let ξ
′

be any ordinal greater than ξ such that ξ
′ ∈ j−1[I] and ∃F ∈ ĊG

ξ′
such that F ∩ ξ = T (ξ).

By the above such a ξ
′

always exists, so the induction will continue up to κ+. Also by the

above, there must exist at least one such F ∈ ĊG
ξ′

such that Aξ′ ,F is unbounded in κ+. Let

T (ξ
′
) equal one such F . Finally, observe that this process can be repeated at limit steps by

first taking the supremum of the dom(T ) as defined so far, and then finding ξ
′

above. This

completes the induction. Let

E =
⋃
{T (α) | α ∈ dom(T )}.

Since our induction is of length κ+, E is unbounded in κ+. Observe that we have

coherence along the clubs enumerated by T , that is for α, β ∈ dom(T ), α < β → T (β)∩α =

T (α). To see that this gives us closure, let 〈αξ | ξ < γ〉 ⊂ E be an increasing sequence for

some γ < κ+, and let α =
⋃
ξ<γ αξ. By the unboundedness of dom(T ) let β ∈ dom(T )− α.

Then by the coherence along T it follows that α ∈ T (β) ⊂ E, and thus E is club in κ+.

To see that E coheres with ĊG, pick any α ∈ lim(E). Observe by the coherence of

T that α ∈ dom(T ) → E ∩ α = T (α). Since dom(T ) is unbounded there exists some

β ∈ dom(T ) such that α ∈ lim(T (β)). Therefore by the coherency of our original sequence,

T (β)∩α ∈ ĊG
β . Since E ∩β = T (β) we therefore have that E ∩α ∈ ĊG

β . Thus E is a thread

for our �(κ+, < ω) sequence, which is a contradiction to the existence of such a sequence.
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3.5 Conclusion

We have shown that V [G] |= E is a thread for the sequence ĊG, but this contradicts that

we forced ĊG to be a �(κ+, < ω) sequence. Therefore, V [G] |= ¬�(κ+, < ω).

Additionally, if 〈δn | n ∈ ω〉 is the Prikry sequence added by G, then our forcing collapses

δ0 to ℵ1, and it collapses δn to ℵ2n+1 for n ∈ [1, ω). Therefore in V [G] we have κ = ℵω. Also

our forcing has the κ+-c.c, so κ+ is preserved as the cardinal successor of κ, and therefore

becomes ℵω+1 in V [G]. Thus we conclude V [G] |= ¬�(ℵω+1, < ω).
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Chapter 4

Separation of �κ,2 and �κ at Singular

Cardinals

It follows by the definition that if �κ,m holds for some for m ≥ 1, then �κ,n holds in the same

model for n ≥ m. However, one may construct models in which the opposite implications

do not hold. In other words, the principles �κ,n need not be equivalent for different n in

certain models. In this chapter we show this separation of square principles for �κ,2 from

�κ,1 at a singular cardinal using relatively modest large cardinal assumptions.

Theorem 4.0.1 (GCH) It is consistent relative to the existence of a subcompact cardinal

which is also measurable that �κ,2 holds while �κ fails at a singular cardinal κ.

4.1 Large cardinal assumptions

Let κ be the least subcompact cardinal which is also measurable. By a standard Easton

support iteration one can force GCH while preserving these properties, so we may assume

that GCH holds as well. Let U be a measure on κ of Mitchell order 0, and let e : V →

N = Ult(V, U) be the corresponding ultrapower map. Define Sκ to be the set of all ordinals

ξ < κ such that there is an elementary map j witnessing the subcompactness of κ, for which

crit(j) = ξ and j(ξ) = κ.

It follows from the subcompactness of κ that Sκ is stationary. Additionally, observe that

κ /∈ e(Sκ). If it was, then N would contain a measure on κ, violating our assumption that
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o(U) = 0. Thus Sκ /∈ U , a fact that will use when showing that our preparation forcing

preserves measurability.

4.2 Defining the preparation forcing

Our forcing will occur in two major steps. First we will do a preparation forcing, and get a

model of �κ,2 +¬�κ in which the measurability of κ has been preserved. We will then follow

with a Prikry forcing, and show that our desired results hold in the final generic extension.

We will now define an iterated forcing with Easton support. At each α ∈ Sκ we will add

a �α,2 sequence and then immediately thread it. At stage κ at the top of our iteration, we

will add a �κ,2 sequence but do no threading. Let us now define our iteration by induction.

For α ∈ Sκ let P 1
α be the forcing which adds a �α,2 sequence, and let Ṗ 2

α be a name for the

forcing which threads the sequence P 1
α will add. Q̇α be a name for P 1

α ∗ Ṗ 2
α. On the other

hand if α /∈ Sκ let Q̇α = {1}.

Now let Pα be the set of all α-sequences p = 〈pβ | β < α〉 such that

1. For each γ < α, p � γ ∈ Pγ and γ pγ ∈ Q̇γ, and

2. If α is a regular cardinal then p has bounded support; that is, ∃ξ0 s.t. ∀ξ ≥ ξ0 pξ = 1.

For p, q ∈ Pα we define the ordering ≤α by letting p ≤α q if and only if

(∀γ < α)(p � α ≤γ q � γ and p � γ γ pγ ≤γ qγ).

Finally, let P = Pκ ∗ Ṗ 1
κ define our complete iteration.

Observe by part 2 of our definition that at regular cardinals we take direct limits, and

by part 1 at singular ordinals we must have inverse limits, and so our iteration has Easton

support. Next, observe that due to absorption each iterate Qα = P 1
α ∗ Ṗ 2

α is equivalent to

forcing with Col(α+, α). It is easy to see that the properties necessary for absorption are

satisfied.

In particular, let us observe that by adding a thread C to a �α sequence, we must have

added a surjection from α to α+, thereby collapsing the cardinal α+. This is a critical

property of our forcing which we will use often. To see why this is, suppose that ~C = 〈Cξ |

29



ξ ∈ (α, α+)〉 is a �α sequence, let D be a thread for ~C, and suppose that Cη = η ∩ Cγ. Let

fγ : Cγ → ot(Cγ) be an order isomorphism. Then fγ � η must be an order isomorphism

from Cη to ot(Cη). We see therefore that if club sets cohere, so do their order isomorphisms,

and so
⋃
ξ∈lim(D) fξ : D → ot(D) must be an order isomorphism. Since ot(Cξ) ≤ α for all

ξ ∈ (α, α+), we conclude that ot(D) = supξ∈lim(D)ot(Cξ) ≤ α. Thus the order type of D is

at most α, and so we have a surjection from α onto α+.

4.3 Lifting the embedding

Let θ be a regular cardinal that is large enough such that P ∈ Hθ. It follows from subcom-

pactness that there is a set H, an elementary embedding j : H → Hθ, and a cardinal α ∈ S∗κ
with the properties that Hα+ ⊆ H, crit(j) = α, j(α) = κ, and j(P

′
) = P for a set P

′ ∈ H.

Observe that by elementarity we have that P
′
= Pα ∗ Ṗ 1

α, so we will refer to P
′

by its factors

from now on. Finally, let Gα be a generic for Pα over V .

Let us note here that our general convention in this chapter for sets X in the range of j

or any of its liftings is that j(X
′
) = X for some X

′
. This is because most sets of concern will

be first defined on the j-side, and then we will find a corresponding set that our embedding

maps to it.

4.3.1 First lifting

We shall first lift j to an elementary map with domain H[Gα]. First, observe that since P

has Easton support that we can factor P at α. Let us write P ∼= Pα ∗ Q̇ ∗ Ṗκ, where Q̇ is a

name for an Easton support forcing Q by the same definition as P , but with domain [α, κ).

Let

∆ = {q ∈ Q | ∃p ∈ Gα s.t. q = q̇Gα , where j(p) = (s, q̇)}.

This is a definition with parameter Gα, so ∆ ∈ Hθ[Gα]. Let us show that ∆ is a directed set.

Let q1, q2 ∈ Q, and let p1, p2 ∈ Gα witness this. Since Gα is a filter, there exists p ∈ Gα such

that p ≤ p1, p2. By elementarity, j(p) ≤ j(p1), j(p2). Writing j(p) = (s, q̇), j(p1) = (s1, q̇1),

and j(p2) = (s2, q̇2) this means that s Pα q̇ ≤ q̇1, q̇2. Finally, observe that in fact j(p) =

(p, q̇) for some q̇. So since p ∈ Gα, s ∈ Gα, and so q̇Gα ≤ q1, q2, meaning that q ∈ ∆.
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Now observe that since the iterates of Q̇Gα are equivalent to Col(ξ, ξ+) for ξ ∈ [α, κ)∩Sκ,

and these forcings are < ξ-directed closed, the forcing Q̇Gα is < λ-directed closed where

λ = min(Sκ − α). Since |∆| ≤ |Gα| ≤ |Pα| = 2α < λ, there exists a single condition a ∈ Q

such that ∀d ∈ D a ≤ d.

Let K be a generic for Q̇Gα over Hθ[Gα] such that a ∈ K. Let Gκ = {(s, q̇ | s ∈

Gα and q̇Gα ∈ K} be the generic that factors as Gκ = Gα ∗ K. Now define j1 : H[Gα] →

Hθ[Gκ] by

j1(σGα) = j(σ)Gκ ,

where σ ∈ HPα . By a standard argument this is a well-defined elementary embedding

extending j.

4.3.2 Second lifting

First, let us factor K as F 1
α ∗F 2

α ∗K
′
, where F 1

α and F 2
α are generics for P 1

α and P 2
α taken over

the appropriate models. We will now lift j1 to an elementary map with domain H[Gα ∗F 1
α].

Let ~Cα =
⋃
F 1
α be the �α,2 sequence added by P 1

α and let Dα =
⋃
F 2
α be the thread

for ~Cα added by P 2
α. For each limit ξ ∈ α+ we have that ~Cα � (ξ + 1) ∈ H[Gα] since

these restrictions are conditions in (Ṗ 1
α)Gα . In addition, for each ξ ∈ lim(Dα) we have that

Dα ∩ ξ ∈ ~Cα(ξ) ⊂ H[Gα].

Let β = sup j[α+]. Since j is a subcompactness map, β < κ+. Let p̄ =
⋃
j1[F 1

α] and let

c̄ =
⋃
j1[Dα]. Then let a

′
= p̄∪{〈β, {c̄}〉}. This is a condition in (Ṗ 1

κ )K . Let F 1
κ be a generic

for (Ṗ 1
κ )K over Hθ[Gα ∗K] such that a

′ ∈ F 1
κ . Now define j

′
: H[Gα ∗F 1

α]→ Hθ[Gα ∗K ∗F 1
κ ]

in the usual way, letting

j
′
(σF

1
α) = j1(σ)F

1
κ ,

where σ ∈ H[Gα](Ṗ
1
α)Gα is any name. Again by a standard argument, j

′ ⊃ j1 ⊃ j is an

elementary embedding. For simplicity let G = Gα ∗K ∗ F 1
κ and let G

′
= Gα ∗ F 1

α, and since

we will not need to refer to our original j or the first lifting j1, from now on we will just write

j when we mean j
′
. Thus we have the elementary embedding j : H[G

′
] → Hθ[G] which we

can now use in our arguments.
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4.4 Doing the preparation forcing

We shall now look at the generic extension Hθ[G] and check that �κ,2 holds, �κ does not,

and κ remains a measurable cardinal.

First, it is easy to see that Hθ[G] |= �κ,2. The forcing P 1
κ adds such a sequence. By an

argument similar to the one presented at the end of section 4.2, if our forcing had simulta-

neously added a thread for this sequence, it would have collapsed the cardinal κ+.

4.4.1 �κ fails

Now we will show that Hθ[G] |= ¬�κ by adopting a method by Jensen. First, let us

assume towards a contradiction that Hθ[Gα∗K]

(Ṗ 1
κ )Gα∗K

Ċ is a �κ sequence. To improve readability,

we will abbreviate this as P 1
κ
Ċ is a �κ sequence, and do similar abbreviations whenever the

context makes it unambiguous to do so. Furthermore, without loss of generality suppose that

Ċ = j1(Ċ
′
), that is, that Ċ is chosen to be in the range of j1. Finally, let C = (ĊF 1

κ )β ∈ Hθ[G]

and let C
′
= (Ċ

′
)F

1
α ∈ H[G

′
].

Let let D = j−1[Cβ] ∈ Hθ[G]. By elementarity it follows that (Ċ
′
)F

1
α is a �α sequence

with thread D. To see this, let ξ ∈ lim(D) ∩ cf(< α). Then j(ξ) ∈ lim j(D) ⊆ lim(Cβ), so

by coherency Cj(ξ) = Cβ ∩ j(ξ). Taking the preimage we get C
′

ξ = D ∩ ξ.

Observe that our iteration above Pα+1 = Pα ∗ Q̇α is ≤ α+-distributive. Therefore this

segment of our iteration does not add small sets, and so D ∈ Hθ[Gα ∗ F 1
α ∗ F 2

α]. Next,

observe that the iteration Pα has the < α chain condition and therefore does not collapse

α+. As before, this means that forcing with Pα cannot add a thread to a �α sequence, so

D /∈ Hθ[Gα]. Finally we force that Hθ[Gα ∗ F 1
α] |= �α,2 and thus must preserve α+. We

conclude that D /∈ Hθ[Gα ∗ F 1
α], and so it must be added by the forcing (Ṗ 2

α)F
!
α .

Briefly let us define some notation to use. For any condition p ∈ (Ṗ 2
α)F

1
α let p∗ = 〈

⋃
F 1
α �

(sup(p) + 1, ṗ〉 be the unique condition in Qα with upper part ṗ and lower part which is the

initial segment of the added �α,2 sequence which has just added p.

Now since D is added by the forcing (Ṗ 2
α)F

!
α , there must exist some ordinal ν < α+ and

forcing conditions s, s
′ ∈ P 2

α for which

s∗ Qα ν̌ ∈ Ḋ, s
′∗ Qα ν̌ /∈ Ḋ,
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Hθ[Gα] Hθ[Gα ∗ F 1∗
α ]

Hθ[Gα ∗ F 1∗
α ∗ C1]

Hθ[Gα ∗ F 0∗
α ∗ C0]

Figure 4.1: The forcing extensions.

where Ḋ is a Qα-name for D. That is, let the conditions s and s
′

witness that the statement

“ν̌ ∈ Ḋ” is undecided in the ground model Hθ[Gα ∗ F 1
α].

We will now build four ω-sequences via induction. First let s0
0 = s, s1

0 = s
′
, and ξ0

0 =

ξ1
0 = ν. Now suppose that the ith terms of each sequence have been defined for some i ∈ ω.

Let ξ0
i+1 ≥ ξ1

i , and let s0
i+1  ξ̌0

i+1 ∈ Ḋ, where s0
i+1 ≤ s0

i . Next let ξ1
i+1 ≥ ξ0

i+1, and let

s1
i+1  ξ̌

1
i+1 ∈ Ḋ, where s1

i+1 ≤ s1
i .

Our induction is complete, so let sh =
⋃
shi and let ξ =

⋃
ξhi for each h ∈ 2. If necessary,

extend s0 and s1 such that their domains are both equal to an ordinal η ≥ ξ. Observe

that since our two ordinal sequences are interleaved their suprema are equal to ξ for either

choice of h. Let p = F 1
α � η ∪ {〈η, {s0, s1}〉} be a condition in P 1

α. For each h we have that

〈p, sh〉 ≤Qα sh∗i for every i ∈ ω, and thus the condition forces the corresponding decision

about the membership of ν in D.

We will now select generics. Let F 1∗
α be a generic for P 1

α over Hθ[Gα] containing p. That

is, F 1∗
α agrees with F 1

α at least up through η. Let us call C∗ = (Ċ
′
)F

1∗
α ∈ Hθ[Gα ∗ F 1∗

α ].

Let Ch be (Ṗ 2
α)F

1∗
α generics over Hθ[Gα ∗ F 1∗

α ] containing sh for each h ∈ 2, respectively.

Let us call Dh = (Ḋ)F
1
α∗Ch for each h ∈ 2. Because ξ ∈ lim(Dh) for each h we have that

ν ∈ D0 ∩ ξ = C∗ξ = D1 ∩ ξ 63 ν.

This is a contradiction, since the set C∗ξ is in the ground model Hθ[Gα ∗ F 1∗
α ], and so

the forcing statement “ν̌ ∈ Ḋ” must have already been decided in this model. Therefore

our initial assumption that the existence of a square sequence could be forced was false, so

Hθ[G] |= ¬�κ.
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4.4.2 κ is measurable

We now need to show that our preparation forcing has preserved the measurability of κ,

so that we can next do a Prikry forcing. First, observe that the forcing P 1
κ over Hθ[Gκ] is

(κ + 1)-strategically closed and therefore does not add new subsets of κ. Thus in order to

show Hθ[G] |= κ is measurable it suffices to show that Hθ[Gκ] |= κ is measurable.

Recall that we have the ultrapower map e : V → N ∼= Ult(V, U) and that κ /∈ e(Sκ),

and so the forcing e(Pκ) is trivial at the κ step. We may factor e(Pκ) as Pκ ∗ Ṗ>κ where

Ṗ>κ is a name for the Easton support forcing by the same definition but with support in

e(Sκ)∩[κ, e(κ)). Finally, let Q = ṖGκ
>κ be the evaluation of this name by Gκ in the ultrapower

N . We are going to construct a generic for Q over N [Gκ] which will be defined in V [Gκ].

Let λ be the least ordinal in e(Sκ)\κ. It follows that λ ∈ (κ+, e(κ)) since by elementarity,

e(Sκ) is cofinal in e(κ), and also (κ+)N = κ+, yet λ must be inaccessible in N . Since N is an

ultrapower 2κ < e(κ) < (2κ)+, so this means that since we have assumed GCH, in V we have

that λ has cardinality κ+. Since λ is the least ordinal in which Q has nontrivial support,

in N [Gκ] we have that Q is < λ-closed. Additionally, observe that Q has (e(κ)++)N -many

dense subsets.

Since |e(κ)++| = κ+, V [Gκ] sees that Q has κ+-many dense subsets, and that since

λ ∈ (κ+, κ++), V [Gκ] sees that Q is < κ+-closed. We will be doing induction to create a

κ+-sequence of conditions from all of our dense sets. For this argument we will need to be

able to extend κ-length sequences, and to do so we introduce the following claim which says

that N [Gκ] contains all κ-length sequences of its elements which are constructed in V [Gκ].

Claim 4 κN [Gκ] ∩ V [Gκ] ⊆ N [Gκ].

Proof of claim: It is enough to show that N [Gκ] is closed under functions into the ordinals,

so let f : κ→ On be a function in V [Gκ], let ḟ ∈ PN [Gκ]
κ be a name for f , and let p ∈ Gκ be

such that p  ḟ is a function from κ into the ordinals. For each α < κ let

Aα = {q ≤ p | ∃β q  ḟ(α) = β}.

Each Aα is dense below p, so for each α < κ and each q ∈ Aα let

g(α, q) = the unique β for which q  ḟ(α) = β.
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Now since |g| = κ · |Pκ| = κ2 = κ and κN ⊆ N , we have that g ∈ N . Therefore we may

define f in N [Gκ] by

f(α) = the unique β for which there is some q ∈ Gκ s.t. g(α, q) = β.

� (Claim)

We are now ready to do the induction. Let 〈Dξ | ξ < κ+〉 be an enumeration of all dense

sets Dξ ∈ P(Q) ∩ N [Gκ]. Choose p0 ∈ D0. Given some α < κ+ and pα, use the density of

Dα+1 to choose pα+1 ∈ Dα+1 ↓ pα. Now suppose that we have defined 〈pξ | ξ < γ〉 for some

γ < κ+. By our claim this sequence is a set of N [Gκ], (Q is < λ-closed)N [Gκ], and in N [Gκ]

we have that λ > κ+ is a cardinal. Therefore in N [Gκ] we know there exists some p
′
γ which

lies below pξ for all ξ < γ. Again using density, let pγ ∈ Dγ ↓ p
′

ξ. This construction produces

the full sequence 〈pξ | ξ < κ+〉 in V [Gκ].

Let G>κ be the filter generated by 〈pξ | ξ < κ+〉. It meets every dense set in N [Gκ] of Q,

so it is generic for Q over N [Gκ]. Finally, observe that our factoring trivially lets us extend e

to an elementary embedding e
′
: V [Gκ]→ N [Gκ ∗G>κ], so we can derive a measure U

′
from

e
′
. But this means that U

′
can be defined from the parameters U, Pκ, Gκ, and G>κ. Since

our above work showed that we can construct G>κ in V [Gκ] and we know that the rest of

our parameters are in the same model, we have shown that V [Gκ] contains a measure on κ.

Finally, recall that Hθ[Gκ] = (Hθ)
V [Gκ]. Since U

′ ∈ V [Gκ] and |trcl(U
′
)| = 2κ < θ, we

have that U
′ ∈ Hθ[Gκ]. By our first comment in this section this means that κ remains

measurable in Hθ[G].

4.5 Prikry forcing

We have demonstrated that Hθ[G] |= κ is measurable, so we are now in a position to force

κ to be a singular cardinal. Observe that H[G
′
] |= α is a measurable cardinal as well. Let

R be a Prikry forcing on κ and R
′

be a Prikry forcing on α such that j(R
′
) = R. We would

like to prove that for any generic K for R we have that Hθ[G ∗K] |= �κ,2 +¬�κ. That �κ,2

must hold is the same argument we have seen before. Prikry forcing preserves all cardinals,

and if forcing by R adds a thread it must collapse κ+.
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What remains to show is that �κ does not hold in our extension. We will do so with

an argument very similar to that of section 4.4.1. However, observe that this time we can

not lift j to Hθ[G ∗K], since in the extension κ is singular yet the critical point of j must

be regular. Our argument therefore will require more care, as we must work in the forcing

language when achieving our contradiction.

Let us note now that forcing with R
′

over H[Gα ∗ F 1
α] is equivalent to forcing over

V [Gα ∗F 1
α] for most statements that we will be concerned with in this section. We begin by

assuming towards a contradiction that there is a condition (s, A) ∈ R′ such that

j(s, A) Hθ[G]
R Ċ is a �κ sequence,

where Ċ = j(Ċ
′
) for some R

′
-name Ċ

′
. By elementarity we also have that (s, A) H[G

′
]

R′

Ċ
′

is a �α sequence. Since it is forced that Ċ
′

is a �α sequence, it will be forced that the

order type of each Ċ
′

ξ is less than α. Thus to each ξ ∈ lim(α, α+), let (sξ, Aξ) ≤ (s, A) and

γξ be such that (sξ, Aξ) R′ ot(Ċ
′

ξ) = γ̌ξ. Observe that there are α+-many such conditions,

but there are only α-many possible stems for conditions in R
′
. Let s̄ be a stem such that

S = {ξ < α+ | sξ = s̄} is stationary in α+ in V [Gα ∗ F 1
α]. Lastly, let Ā =

⋂
ξ∈S j(Aξ),

and observe by κ-completeness this is a set in the ultrafilter used to build R. We now

have a single condition (s̄, Ā) ∈ R such that for every ξ ∈ S, (s̄, Ā) ≤ j(sξ, Aξ). Since the

ordinals γξ are below the critical point of j, it follows by elementarity that for all ξ ∈ S,

(s̄, Ā) R ot(Ċj(ξ)) = γ̌ξ < α̌.

We now work through a series of claims.

Claim 5 There is a condition (s̄, Ā∗) ≤∗R (s̄, Ā) and a unique set D ∈ Hθ[G] club in β for

which

(s̄, Ā∗) R Ď ⊆ Ċβ.

Proof of claim: Let E = 〈eξ | ξ < α+〉 ∈ V be an enumeration of a set club in β of order

type α+. Define the formula ϕ(ξ) := “ěξ ∈ Ċβ”, and let p0 be a direct extension of (s̄, Ā)

deciding ϕ(0). If we have pξ defined let pξ+1 ≤∗ pξ decide ϕ(ξ + 1). Suppose that γ < α+

is a limit ordinal and that we have already defined the sequence 〈pξ | ξ < γ〉. Since ≤∗R is

κ-closed, we may pick some p
′
γ such that p

′
γ ≤∗ pξ for all ξ < γ. We then let pγ ≤∗ p

′
γ be a
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condition that decides ϕ(γ). Finally, let pα+ ≤∗ pξ for all ξ < α+. Since we have only taken

direct extensions, we know that pα+ is of the form (s̄, Ā∗) for some Ā∗ ⊆ Ā. In our ground

model let

D = {eξ | (s̄, Ā∗) R ϕ(ξ)}.

Since (s̄, Ā∗) R Ď = Ċβ ∩ Ě and being club is an absolute property it must be that D is

club in β.

� (Claim)

Claim 6 Define the set D
′
= j−1[D] ∈ Hθ[G]. Then D

′
/∈ V [Gα ∗ F 1

α].

Proof of claim: Suppose otherwise, that D
′ ∈ V [Gα ∗ F 1

α]. Take any ξ ∈ lim(D
′
) ∩ S for

which (cf(ξ) < α)H[Gα∗F 1
α]. By writing ξ =

⋃
η<cf(ξ) ξη observe that j(ξ) = j(

⋃
η<cf(ξ) ξη) =⋃

η<cf(ξ) j(ξη) = sup j[ξ]. Since D
′ ∩ ξ is cofinal in ξ, j[D

′ ∩ ξ] is cofinal in sup j[ξ] = j(ξ).

Therefore sup j[D
′ ∩ ξ] = j(ξ), and so j(ξ) ∈ lim(D). By claim 5, since (s̄, Ā∗) forces that

D is a subset of Cβ, we have that (s̄, Ā∗) R j(ξ) ∈ lim(Ċβ).

We conclude that (s̄, Ā∗) R Ċβ ∩ j(ξ) = Ċj(ξ). By intersecting the left side of this forced

statement with Ď, we get

(s̄, Ā∗) R Ď ∩ j(ξ) ⊆ Ċj(ξ),

and therefore that

(s̄, Ā∗) R ot(Ď ∩ j(ξ)) ≤ ot(Ċj(ξ)) = γ̌ξ < α̌.

However since order type is absolute, V [Gα ∗ F 1
α] |= ot(D ∩ j(ξ)) < α, and so

ot(D
′ ∩ ξ) = ot(j[D

′ ∩ ξ]) ≤ ot(D ∩ j(ξ)) < α.

But this holds for cofinally-many ξ < α+, so we must conclude that ot(D
′
) ≤ α. However,

V [Gα ∗ F 1
α] sees that α+ has not yet been collapsed to α, whereas D

′
is a set cofinal in α+

of order type at most α, a contradiction.

� (Claim)

Claim 7 If ξ ∈ lim(D
′
) is such that (cf(ξ) < α)H[Gα∗F 1

α] then there is a single condition

(s̄, B) ∈ R′ such that

η ∈ D′ ∩ ξ → (s̄, B) V [Gα∗F 1
α]

R′
η̌ ∈ Ċ ′ξ
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and

η /∈ D′ ∩ ξ → (s̄, B) V [Gα∗F 1
α]

R′
η̌ /∈ Ċ ′ξ.

Proof of claim: Because we know that j(ξ) ∈ lim(D), j(ξ) will be forced to be a limit

point of Cβ, and so (s̄, Ā∗) R Ċβ ∩ j(ξ) = Ċj(ξ). If we assume that η ∈ D
′ ∩ ξ we know

that j(η) ∈ D ∩ j(ξ), so (s̄, Ā∗) R j(η) ∈ Ċj(ξ). By elementarity there exists a condition

(s̄, B
′
) ∈ R

′
such that (s̄, B

′
) R′ η ∈ Ċ

′

ξ. We may repeat the proof beginning with the

assumption that η /∈ D ∩ ξ, and in doing so we will get a condition (s̄, B
′′
) ∈ R′ such that

(s̄, B
′′
) R′ η /∈ Ċ

′

ξ. Let B = B
′ ∩B′′ .

� (Claim)

4.5.1 �κ fails after Prikry forcing

We can now do an argument which is similar to that of section 4.4.1. Let (p, q̇) ∈ P 1
α ∗ Ṗ 2

α

be a condition that forces claims 6 and 7. Observe that by the closure of our iteration above

the α stage D
′ ∈ V [Gα ∗ F 1

α ∗ F 2
α]. Therefore by claim 6 the set D

′
is added by the forcing

P 2
α. Let Ḋ be a Qα-name for D and let Ḋ∗ be a P 2

α-name for D. There must exist an ordinal

ν < α+ and conditions s, s
′ ∈ P 2

α such that s, s
′ ≤ q and

s∗ Qα ν̌ ∈ Ḋ, s
′∗ Qα ν̌ /∈ Ḋ.

As before we will build four ω-sequences via induction. First let s0
0 = s, s1

0 = s
′
, and

ξ0
0 = ξ1

0 = ν. Now suppose that the ith terms of each sequence have been defined for some

i ∈ ω. Let ξ0
i+1 ≥ ξ1

i , and let s0
i+1  ξ̌

0
i+1 ∈ Ḋ, where s0

i+1 ≤ s0
i . Next let ξ1

i+1 ≥ ξ0
i+1, and let

s1
i+1  ξ̌

1
i+1 ∈ Ḋ, where s1

i+1 ≤ s1
i .

Our induction is complete, so let sh =
⋃
shi and let ξ =

⋃
ξhi for each h ∈ 2. If necessary,

extend s0 and s1 such that their domains are both equal to an ordinal η ≥ ξ. Observe

that since our two ordinal sequences are interleaved their suprema are equal to ξ for either

choice of h. Let p = F 1
α � η ∪ {〈η, {s0, s1}〉} be a condition in P 1

α. For each h we have that

〈p, sh〉 ≤Qα sh∗i for every i ∈ ω, and thus the condition forces the corresponding decision

about the membership of ν in D.

We will now select generics. Let F 1∗
α be a generic for P 1

α over Hθ[Gα] containing p. That

is, F 1∗
α agrees with F 1

α at least up through η. Let us call C∗ = (Ċ
′
)F

1∗
α ∈ Hθ[Gα ∗ F 1∗

α ]. Let

38



Ch be (Ṗ 2
α)F

1∗
α generics over Hθ[Gα ∗ F 1∗

α ] containing sh for each h ∈ 2, respectively. Let us

call Dh = (Ḋ)F
1
α∗Ch for each h ∈ 2.

Here our argument differs from the work in section 4.4.1. Observe that we have ν ∈ D0

and ν /∈ D1, and also that ξ ∈ lim(Dh) for each h ∈ 2. Since the conditions (p, q̇h) for each

h force claim 7, we have that in V [Gα ∗ F 1∗
α ∗ C0]

(s̄, Ā∗) V [Gα∗F 1∗
α ]

R′
ν̌ ∈ Ċξ,

and in V [Gα ∗ F 1∗
α ∗ C1] we have that

(s̄, Ā∗) V [Gα∗F 1∗
α ]

R′
ν̌ /∈ Ċξ.

Observe that although claim 7 was stated using a generic F 1
α all we needed was any generic

for P 1
α, so the above statements hold using F 1∗

α . But since the above forcing statements are

forced by the same condition over the same model, we have a contradiction.

4.6 Conclusion

Thus beginning with a cardinal which is both subcompact and measurable, we have forced

a model in which �κ,2 holds while simultaneously �κ fails for a singular cardinal κ.

There are some natural extensions of this result which we may be able to produce with

identical or slightly stronger assumptions. Namely, it should be easy to get the proof to go

through for �κ,n+1 +¬�κ,n at singular κ and arbitrary n ∈ ω without changing our hypothe-

sis. On the other hand, we expect to be able to adopt our methods in this paper’s first result

to get the result at ℵω, but this may require a slight strengthening of our subcompactness

assumption.
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